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A low speedwind-tunnel investigation is presented documenting the impact of taper ratio at lowReynolds number.

An AR � 5.56 wing using a S8036 section was tested at Re � 100;000 and 150,000. Taper ratio was varied from 1

down to 0.2 in 0.2 increments. An analytic prediction method as well as extended numerical lifting line theory

incorporating nonlinear section data was implemented to compare with experiment. The experimental results

indicated a weak dependence of peak lift to drag ratio on taper ratio for both Reynolds numbers. Surface flow

visualization showed thepresence of a large laminar transitional bubble on theupperwing surface.The relative extent

of the bubble was observed to increase towards the tip region for tapered planforms. Agreement between theory and

experiment in terms of lift and drag estimationwas good. Planform optimization using the extended numerical lifting

line theory indicated that at the test conditions and using the selected airfoil section, a planform that differs from

straight taper or elliptic may be most efficient.

Nomenclature

A = constant
An = coefficients of Fourier series
b = wingspan
CD = wing drag coefficient
CDL = total wing drag due to lift
CDv = wing vortex drag coefficient
CD0

= wing zero lift drag coefficient
CDprofile = wing profile drag coefficient
Cd = section profile drag coefficient
Cdv = section vortex drag coefficient
CL = coefficient of lift
Cl = section lift coefficient
Clα = sectional lift-curve slope
�c = mean geometric chord
c = airfoil chord
cr = root chord length
ct = tip chord length
D = drag of wing
d = sectional drag
e = planform (or Oswald) efficiency factor
ei = inviscid planform efficiency factor
i = index
k = grouped spanwise terms
L = lift of wing
l = sectional lift
N = number of terms in Fourier series
n = index term in Fourier Series
p = exponent
q = exponent
r = spanwise division
S = wing area
V = velocity
x = chordwise coordinate
y = coordinate perpendicular to plane of symmetry
α = angle of attack

αCl = local angle of attack for a given sectional lift
coefficient

αgeo = geometric twist angle
αi = section induced angle of attack
αStall = angle of attack of stall
αZL = sectional zero lift angle of attack
β = exponent
η = normalized spanwise location, attainable leading-

edge suction parameter
ηm = multiplier for lift and drag coefficients
θ = angular measure
λ = taper ratio
μ = dynamic viscosity
ρ = density

Subscripts

b = back of bubble
bubble = streamwise length of bubble
des = desired
f = front of bubble
max = maximum
min = minimum
n = spanwise index
ref = reference
∞ = freestream

Introduction

T HE drag polar of a symmetrical wing in incompressible flight is
commonly approximated as

CD � CDo � CDL � CDo �
C2
L

πARe
(1)

where CDo represents the zero lift drag component and is usually
associated with skin friction drag. The second term C2

L∕�πARe�, is
the drag due to lift and is composed of inviscid vortex drag as well
as viscous sectional profile drag. In common use, the skin friction is
assumed constant, while the sectional pressure drag contribution is
often neglected [e then may be replaced by ei in Eq. (1)]. The skin
friction termmay be estimated using experimental sectional data or a
flat plate analogy.
Performance of a wing is commonly quantified in terms of its

achievable L∕D ratio. Examination of Eq. (1) indicates that for a
given aspect ratio (AR) this is achieved through minimizing skin
friction drag (CDo) and maximizing the wing efficiency e (which
includes both planform and viscous effects). Prandtl’s lifting line
theory heralded the practical and accurate analysis of wing geometry
effects, in essence an estimation of the second term of Eq. (1)
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(ignoring sectional pressure drag) [1,2]. Within the geometrical con-
fines of planar wings (AR > 5), calculation revealed that a wing
with an elliptical spanload distribution yielded the lowest inviscid
drag due to lift [1]. The inviscid planform parameter (ei) reflects this
efficiency and for this genre (planar and unswept) of wings has an
upper bound of 1. An elliptic distribution is commonly associated
with an elliptic planform shape. Elliptic loading can also be emulated
at a selected loading condition using twist. Studies have implied that a
larger chord near the wing tip may be required to generate a “true”
elliptic load distribution [3]. With few exceptions (Supermarine
Spitfire), manufacturing complexities and cost have negated the use
of elliptic planforms.
Numerical lifting line theory as well as lifting surface methods

show that the use of straight taper can yield wings with span effi-
ciency factors close to elliptic (i.e., ei slightly below 1) [4]. A taper
ratio of approximately 0.4 gives the highest efficiency for a given AR
[4]. An increase in wingAR for a given taper ratio yields a systematic
reduction in ei. This does not imply that vortex drag increases, as the
increase in the wing AR outweighs the drop in efficiency. As a
trapezoidal wing AR gets higher, the spanload distribution becomes
progressively flatter. This causes an increase in the load distributions
curvature near the wing tips and thus greater strength of the shed
trailing vorticity in the tip regions yielding a drop in ei. For a given
lift, a greater quantity of fluid is captured to generate the lift impulse
such that the net kinetic energy of the downwash attenuates with an
AR increase. Consequently, vortex drag lessens.
The effect of the taper ratio may be examined with reference to

Fig. 1, which is based on data presented in this article. An impact of
taper is a significant reduction in chord and thus Re as the wing tip is
approached. At low Reynolds number (<250; 000) an airfoil zero or
minimum (for cambered sections) drag coefficient shows a signif-
icant increase as Re drops [5]. Figure 1 shows a plot for λ � 0.2 and
0.6 of the spanwise minimum drag coefficient for an untwisted wing
with a S8036 airfoil as a function ofRe (AR � 5.56). Also presented
is the spanwise variation of the minimum drag coefficient as a func-
tion of the local Re based on chord. As seen, the tip region experi-
ences a disproportionate amount of the profile drag coefficient. A
mean Re of 150,000 yields Re values of 66,666 in the tip vicinity.
This results in extremely high values of the drag coefficient near the
wing tips as indicated in Fig. 1. Although this would not explicitly
reduce the wings planform efficiency e, it could reduce L∕D by
increasingCDo. Multiplication of the localCd by qc to yield the local
drag per meter indicates that the chord variation may compensate
such that the local drag is dominated by the local chord.
An underlying premise in lifting line analysis is that the flow is

inviscid. Thus, the drag due to lift contribution contains no (or negli-
gible) sectional pressure drag contribution. At highReynolds number
this approximation is reasonable. At low Re, boundary layers are
thick and the flow is generally dominated by laminar transitional
bubbles— sectional pressure drag becomes a significant constituent
of the drag breakdown. Taper also shifts loading outboard such that at
low Re outboard wing sections may experience flow separation or
excessively high pressure drag at moderate incidence (which could
reduce e). Thus, tapermay cause a drop in edue to excessive outboard
sectional pressure drag.
In an earlier study [5] the impact of AR on peakL∕D andC

3∕2
L ∕CD

for planar unswept rectangular wingswas explored. It was shown that
neglecting the impact of profile pressure drag yields optimal L∕D
ratios that essentially increase without bound as a function of AR.
The inclusion of profile drag alters this outcome, such that identi-
fiable peaks occur. The level of attainable leading-edge suction,
which relates to the pressure component of the profile drag was the
dominant parameter in the L∕D�max location with respect to AR [5].
An increase in sectional pressure dragwould drive the peak range and
endurance parameter to awing of lower AR. Sectional data examined
in [5] indicated that profile pressure drag is comparatively invariant
for Re > 60; 000. Below this value, the pressure drag was observed
to increase significantly suggesting that small tip chords at low Re
would lead to increased pressure drag, with a corresponding impact
on e.

The wide spread use of unmanned aerial vehicles (UAVs) has
caused a significant increase in the research effort devoted to en-
hancing their efficiency and the understanding of their flow physics.
It would be of value to the community to examine the impact of taper
at low Re typical of a small UAV. In this article, an experimental
program documenting the systematic variation of taper ratio for a
wing with AR � 5.56 is presented. Force balance and surface flow
visualization results are documented. In addition, analytic and nu-
merical estimates incorporating viscous effects are validated against
the experimental data. Lifting line theory is extended to incorporate
nonlinear section data facilitating simulation of the nonlinear lift
curve slope and drag polar at low Re. A planform optimization is
included yielding an optimal planform incorporating viscous effects.

Equipment and Procedure

Five reflection plane wings with taper ratios of 1, 0.8, 0.6, 0.4, and
0.2 were tested, see Fig. 2. The quarter chord of the wings was
unswept. All wings had a S8036 airfoil section (Fig. 2) and an aspect
ratio of 5.56 to facilitate simulation using lifting line theory. The
S8036 is a low Re section with moderate camber and thickness
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Fig. 1 Spanwise variation of drag, drag coefficient and Re for various
taper ratios, S8036 section.
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(16%). The rectangular wing (λ � 1) had an additional end piece that
could be attached to the wing such that it would span the test section
of thewind tunnel (0.5mmgap between thewing and sidewall). This
would allow the sectional characteristics of the profile to be
examined. The wings were created in CATIA and rapid prototyped
yielding acrylonitrile butadiene styrene models. All wing tips were
blunt. Wing finishing encompassed sanding and coating with gloss
black paint. The wing planform area (0.016 m2) was similar for all
models. The reflection plane wingspan was 0.209 m.
Wind-tunnel testing was undertaken using an open circuit

0.3048 m by 0.3048 m ELD wind tunnel. An external 3-component
platform balance was used to measure the loads experienced by the
wings. The angle of attack is set using a stepper motor controlled by a
Velmex controller. The voltage outputs from the load cells (Transducer
Techniques) are digitized using a National Instruments 14 bit
analog-to-digital board. Acquisition is accomplished using a Labview
interface that reads and processes all inputs. The program low pass
filters all signals at 20 Hz using a Butterworth filter. All presented data
points represent 1000 averaged samples. From calibration, the balance
has a demonstrated accuracy within 0.01 N of the applied load. Flow
visualization was also implemented using titanium dioxide suspended
in kerosene and linseed oil.
Wing testing was undertaken at Re � 100; 000 and 150,000

based on the mean chord length of 0.075 m. Characterization of the
airfoil behavior (using the additional end piece) was undertaken at
Re � 40; 000, 60,000, 80,000, 100,000, 125,000, 150,000, 175,000,
and 200,000. Testing involved an angle of attack sweep from −4 to
20deg in two deg increments.Wall correctionswere applied using the
method of Shindo [6] for finite wing solid and wake blockage and
those described in [7] for the downwash. Avalue of 0.92was used for
the downwash parameter [7]. Corrections for solid and wake block-
age were small; with a maximum coefficient change of 1.9% at high
load conditions. Corrections due to downwash were larger, peaking
at approximately 14%. The corrections were adjusted [7] to account
for the use of reflection plane wings as appropriate.

Results and Discussion

In this section, two theoretical approaches are presented to facil-
itate determination of the viscous and inviscid drag of a tapered wing
at low Re. Subsequently the experimental data is examined and then
compared with theory.

Theory—Analytic

In [8] a method is presented that allows the incorporation of
sectional pressure drag into a finitewing drag estimate. The approach
assumes knowledge of the two-dimensional (2-D) polar for the airfoil
section and uses it to extract the variation of the airfoil’s leading-edge
suction with incidence. A loss of leading-edge suction is interpreted
as a rise in pressure drag. Consult [8] for further background on the
method. The drag due to lift (incorporating vortex and sectional
pressure drag) of the wing is estimated using [8]

CDL � �1 − η�CLα
�
CL
CLα
� αZL

�
2

� C2
Lα

πARei

�
η

�
CL
CLα
� αZL

�
2

− 2

�
CL
CLα
� αZL

�
αZL � α2ZL

�
(2)

where the attainable leading-edge suction is estimated using experi-
mental data or simulation for the airfoil section and is given by

η � 1 −
�Cd − Cd min�
Cl� ClClα � αZL�

(3)

For a symmetrical sectionαZL � 0. Estimates forClα may bemade
using any suitable panel method (e.g., Xfoil, Javafoil, etc.). The finite
wing characteristics (CLα and ei) can be established using a vortex
lattice/panel method (AVL, Tornado, XFLR5, etc.) or a numerical
lifting line code, depending on the wing’s geometry. For a tapered
wing, application of Eq. (3) would use an airfoil drag polar at the Re
of thewing’s average chord. The validity of this simplificationwill be
examined later. Note that thismethod does not estimate the zero lift or
minimumdrag coefficient, which is primarily caused by skin friction.
Thus, CDo or CD min needs to be determined from experiment or
other means.
The zero lift or minimum drag coefficient for a tapered wing may

be estimated based on knowledge of the sectional characteristics. The
minimum or zero lift drag of the airfoil section may be approximated
as

Cd min � A�Re�β (4)

The local Reynolds number may be written as

Re�y� � ρVc�y�
μ

(5)

For a straight tapered wing, the variation of the chord is given by

c�y� � cr�1 − �1 − λ�2y∕b� (6)

The minimum or zero lift drag for the wing may be estimated
(excluding twist) as

CD min �
2

S

Zb∕2

0

Cd min�y�c�y� dy (7)

which after substitution yields

CD min �
2

S

Zb∕2

0

A�Re�βcr�1 − �1 − λ�2y∕b� dy (8)

Fig. 2 Geometry of wind-tunnel models and airfoil section. Flow
direction is from left to right.
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Substituting for Re and integrating gives

CD min �
2

S
A

�
ρV

μ

�
β
�
1

2
bc�1�λ�r

�
�λ�2�β� − 1�
��λ − 1��2� β�� (9)

Equation (9) allows the estimation of the wing’s zero lift or
minimum drag coefficient provided the variation of the sectional
characteristics as a function of Reynolds number are known. Note
that Eq. (9) is valid for λ < 0.999. The total drag of the wing is given
by Eq. (2) plus Eq. (9).

Theory—Extended Lifting Line

In this section lifting line theory is extended to incorporate
nonlinear viscous lift and drag effects. The method was developed to
work in conjunction with an optimizer if desired. The formulation
solves for the CD and α from a user specified CL. The wing area and
AR are prescribed and fixed. To obtain the entire nonlinear 3-D lift
curve or drag polar the process must be repeated for each desired CL
value. The wingspan may be calculated using

b �
����������������
S × AR
p

(10)

and used to calculate the mean geometric chord

�c � S∕b (11)

Following numerical lifting line theory, the number of spanwise
divisions provides the terms in the Fourier series

N � r − 1 (12)

Calculating the angular location of the spanwise stations, from 0 to
π, with n ranging from 1 to N

θn �
nπ

r
(13)

This formulation packs the stations closer to the tips, as is common
in lifting line theory. The location of each station relative to the
midplane is given by [9]

yn �
−b cos�θn�

2
(14)

Normalizing the y coordinates relative to the span yields

ηn �
���� 2ynb

���� (15)

Straight taperedwingswere experimentally evaluated in this study.
Consequently, the root chord length follows as

cr �
2 �c

1� λ
(16)

With a local chord length of [4]

cn � cr�1 − ηn�1 − λ�� (17)

The local chord length along with the test conditions provide the
Reynolds number at each station

Ren �
ρ∞V∞cn

μ∞
(18)

The experimental wind-tunnel data for the airfoil is best curve
fitted to provide smooth sectional lift curve slopes. This is necessary
as higher order polynomial functions can provide better behaved
differentiable values (than experimental) at all possible points. These

fitted polynomials are used in lieu of the rawexperimental data for the
Cl verse α data only. The sectional drag data does not require curve
fitting.
The sectional lift curve slope and sectional αZL is found iteratively.

This iteration is necessary as the lifting line solution is closely
coupled with the 2-D behavior of the airfoil. Low Re flows exhibit
highly nonlinear lift curve slopes over a range of angles attack,
requiring iteration. The values for both (lift curve slope and zero lift
angle) are initially assumed to be 2π∕rad and 0 rad, respectively.
Following the solution of the sectionalCl values, the entire lifting line
solution and interpolation is iterated.
Conventional formulations of lifting line theory solve the Fourier

coefficients and the CL given an angle of attack. However, with
manipulation, the Fourier coefficients and angle of attack may be
solved from the CL. Initiating with a common form of the lifting line
equation [10]

cnClαn sin�θn��α� αgeon − αZLn�
4b

�
XN
i�1

XN
n�1

An sin�iθn�
�
sin�θn� �

icnClαn
4b

�
(19)

Now grouping terms that may be evaluated at the same spanwise
location

kn �
cnClαn
4b

(20)

A characteristic of the Fourier series enables the CL to be
proportional only to the first Fourier coefficient [10]

CL � A1πAR (21)

Rearranging Eq. (21)

A1 �
CL
πAR

(22)

By substituting Eq. (20) and separating the first Fourier coefficient
from the summation

kn sin�θn��α� αgeon − αZLn � � A1 sin�θn��sin�θn� � kn�

�
XN
n�1

�XN
i�2

Ai sin�iθn��sin�θn� � ikn�
�

(23)

By rearranging with known terms on the left and unknowns on the
right, and substituting Eq. (22)

kn sin�θn��αgeon − αZLn� −
CL
πAR

sin�θn��sin�θn� � kn�

�
XN
n�1

�XN
i�2

Ai sin�iθn��sin�θn� � ikn� − kn sin�θn�α
�

(24)

To solve via matrix methods the left side becomes the vector

LHS �

2
64

k1 sin�θ1��αgeo1 − αZL1
� − CL

πAR sin�θ1��sin�θ1� � k1�
..
.

kN sin�θN��αgeoN − αZLN � −
CL
πAR sin�θN��sin�θN� � kN�

3
75

(25)

With the known coefficients on the right side becoming the matrix
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RHS�

2
664

sin�2θ1��sin�θ1��2k1� ··· sin�Nθ1��sin�θ1��Nk1� −k1 sin�θ1�
..
. . .

. ..
. ..

.

sin�2θN��sin�θN��2kN� ··· sin�NθN��sin�θN��NkN� −kN sin�θN�

3
775 (26)

Solving for the unknownFourier coefficients aswell as the angle of
attack results in the vector

2
664
A2

..

.

AN
α

3
775 � RHS−1LHS (27)

With the Fourier coefficients determined, the trigonometric series
follows [11]

�
Clc

b

�
n

�
XN
n�1

4An sin�nθn� (28)

The results of this series are used to solve for the sectional lift
coefficient [11]

Cl �
b�Clcb �n
cn

(29)

Using the sectional lift coefficient at each spanwise station the
accompanying local sectional lift curve slope is solved by interpo-
lation of the differentiation of the preceding polynomials based on
localRe. TheαZL is determined via the solvedCl and the sectional lift
curve slope, the local angle of attack αCl, which is easily found once
the local Cl is identified

αZL � αCl −
Cl
Clα

(30)
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Fig. 3 Effect of Re on behavior of S8036 airfoil.
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Equations (24–30) are iterated until the values of the sectional lift
curve slope and sectionalαZL converge towithin a prescribed tolerance.
Once complete, the following multiplier [11] is used throughout

the determination of several coefficients (m is not an index)

ηm �
π sin�θn�

2r
(31)

Once the final angle of attack is attained, the induced angle of
attack, in rad, is found through [11]

αi �
XN
n�1

nAn sin�nθn�
sin�θn�

(32)

and is used for the sectional vortex drag [11]

Cdv � Clαi (33)

An integration of the sectional vortex drag over the entire wing
yields the total vortex drag [11]

CDv �
XN
n�1

CdvnARηm (34)

From the local Cl, a lookup of the local airfoil sectional drag
coefficientCd values is found for two closest Reynolds numbers and
linearly interpolated. For rapid iteration, linear interpolation is pre-
ferred; other forms of interpolation provide negligible differences in
final values at the expense of greater computational effort. The three-
dimensional (3-D) wing profile drag is found through an integration
of the sectional profile drag [11]

CDprofile �
XN
n�1

Cdncnηm
�c

(35)

Finally, combining drag values yields the total drag of the wing

CD � CDprofile � CDv (36)

The particular steps for this method are enumerated below:
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Fig. 5 Effect of taper ratio on longitudinal aerodynamic forces: a) Re � 100;000, b) Re � 150;000, and c) summary of influence of taper ratio on
performance characteristics.
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1) Select wing area S and AR. Calculate the wingspan b and mean
geometric chord �c.
2) Select the number of terms in the Fourier series (20) and then

calculate the spanwise divisions r.
3) Calculate the angular location of the stations θn.
4) Calculate and normalize the spanwise evaluation stations yn.
5) Calculate the root, local chord and Re at each spanwise station.
6) Curve fit using polynomials (or similar) sectional 2-D airfoil lift

data encompassing the Re range expected across the wing.

7) Initial values for the 2-D lift curve slope and zero lift angle
of attack are assumed, generally 2π and 0, and later iterated.
Iteration occurs until the values are within a close prescribed
tolerance.
8) Equation (24) is solved to produce the unknown Fourier

coefficients An, which may be solved through the described matrix
method using the local chord lengths cn, the local 2-D lift curve slope
Clαn, the local 2-D zero lift angle of attack αZL, wingspan b, and any
geometric twist applied αGEO.

λ = 0.2, Re= 100,000, α = 5 deg λ = 0.2, Re= 150,000, α = 5 deg
turbulent flow

laminar bubble

laminar flow

focus of 
separation 

separation line 

laminar bubble

focus

2D, Re= 150,000, α = 4 deg, Re match
for 0.5 of semi-span of λ = 0.2   
at Re = 150,000

trailing edge separation 

2D, Re= 90,000, α = 4 deg, Re match  
for 0.9 of semi-span of λ = 0.2  
at Re = 150,000

λ = 0.2, Re= 100,000, α = 10 deg λ = 0.2, Re= 150,000, α = 10 deg

λ = 0.2, Re= 100,000, α = 14 deg λ = 0.2, Re= 150,000, α = 14 deg

λ = 0.4, Re= 100,000, α = 5 deg λ = 0.4, Re= 150,000, α = 5 deg

λ = 0.4, Re= 100,000, α = 10 deg λ = 0.4, Re= 150,000, α = 10 deg

λ = 0.4, Re= 100,000, α = 14 deg λ = 0.4, Re= 150,000, α = 14 deg

λ = 1, Re= 100,000, α = 5 deg λ = 1, Re= 150,000, α = 5 deg

λ = 1, Re= 100,000, α = 10 deg λ = 1, Re= 150,000, α = 10 deg

λ = 1, Re= 100,000, α = 14 deg λ = 1, Re= 150,000, α = 14 deg

Fig. 6 Effect of α and Re on Titanium Dioxide rendered skin friction patterns (flow from bottom to top).

Table 1 Effect of taper ratio and Re on bubble characteristics, α � 5 deg

Parameter 2y∕b � 0.27, Re � 100; 000 2y∕b � 0.81, Re � 100; 000 2y∕b � 0.27, Re � 150; 000 2y∕b � 0.81, Re � 150; 000

xf∕c�y� (λ � 0.2) 0.35 0.23 0.35 0.26
xb∕c�y� (λ � 0.2) 0.52 0.58 0.53 0.54
xbubble∕c�y� (λ � 0.2) 0.17 0.35 0.19 0.28
xf∕c�y� (λ � 0.4) 0.32 0.34 0.29 0.37
xb∕c�y� (λ � 0.4) 0.51 0.62 0.48 0.59
xbubble∕c�y� (λ � 0.4) 0.19 0.18 0.18 0.23
xf∕c�y� (λ � 1) 0.38 0.40 0.38 0.42
xb∕c�y� (λ � 1) 0.56 0.60 0.57 0.61
xbubble∕c�y� (λ � 1) 0.18 0.20 0.19 0.19

Table 2 2-D and 3-D bubble characteristics, α � 4 deg

Parameter 2y∕b � 0.9, Ren � 90; 000 2-D, Re � 90; 000 2y∕b � 0.5, Ren � 150; 000 2-D, Re � 150; 000

xf∕c�y� (λ � 0.2) 0.26 — — 0.36 — —

xb∕c�y� (λ � 0.2) 0.55 — — 0.56 — —

xbubble∕c�y� (λ � 0.2) 0.29 — — 0.20 — —

xf∕c�y� (2-D) — — 0.38 — — 0.40
xb∕c�y� (2-D) — — 0.65 — — 0.65
xbubble∕c�y� (2-D) — — 0.28 — — 0.25
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9) The localCl values are solved using Eqs. (28) and (29) using the
Fourier coefficients An from step 8.
10) These Cl values are then used to determine the local 2-D lift

curve slope and the local 2-D zero lift angle of attack.Variations in the
Reynolds number require interpolation of the applicable values based
on the local Reynolds numbers. The lift curve slopes can be found
through differentiation of the polynomial curve fits found in step 6.
Using these lift curve slopes the zero lift angle of attack is found
through Eq. (30).
11) Steps 8 through 10 are repeated iteratively until the lift curve

slopes converge to within a prescribed tolerance of the prior
value. This provides reasonable assurance that the Cl distribution is
accurate.
12)Next, themultiplier ηm is solved for each station usingEq. (31).
13) The local induced angle of attack αi is calculated using

Eq. (32), using the Fourier coefficients An from step 8.
14) The induced angle of attacksαi from step 14 are then combined

with the localCl to calculate the local vortex dragCdv using Eq. (33).
Summing these local vortex drag contributionsCdi the multiplier ηm,
and the AR are used in Eq. (34) to solve for the vortex drag for the
finite wing CDi.

15) The local profile drag coefficient Cdprofile values are found
through a combination of linear interpolation of the 2-D drag polar,
Cdprofile values based from the local Cl values found in step 9 and
based on the local Reynolds number.
16) TheseCdprofile contributions are integrated over the span using

Eq. (35) to produce the CDprofile of the finite wing. This equation
weights the local chord length, cn, to the mean geometric chord.
17) Finally, summing the values from steps 16 and 17 produces the

total finite wing drag coefficient CD.
The method described above was verified using computations in

Sivells and Neely [11,12]. Although not included explicitly due to
space considerations, the method closely matched with that in [12].
The test article had anAR � 9, nowashout, a taper ratio of 0.4, and a
Reynolds number of 4.4 × 106.
Note that a fundamental difference between the analytic and

numerical lifting line theory approaches is in the estimate of the
sectional pressure drag. The analytic approach combines the
sectional pressure and finite wing inviscid vortex drag into a total
drag due to lift term (CDL). The numerical approach, following that of
[11] combines the viscous drag into a single term (CDprofile) separate
from the inviscid vortex drag (CDv).
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Fig. 7 Comparison of nonlinear numerical lifting line theory and experiment: a) Re � 100;000 and b) Re � 150;000.
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Optimization

In an effort to determine the best planform for drag minimization
accounting for planform and viscous effects, an optimizer was
implemented. To allow for a wide range of possible planform shapes
the following equation was used instead of Eqs. (16) and (17) in the
numerical method

cn � cr�1 − ηpn�q � ctηn (37)

Equation (37) yields a variety of permissible planform shapes
including elliptic and rectangular. Using Eq. (37), constraints for
optimizing the planform must be implemented. In this implemen-
tation the wing area and aspect ratio, and thus the wingspan must be
conserved. By integrating equation (37) over the semispan

S

2
�
Zb2
0

c�y� dy �
Zb2
0

�cr�1 − ηpn�q � ctηn� dy (38)

The resultant function includes a hypergeometric series

S

2
�
Zb2
0

�
cr

�
1 −

�
2y

b

�
p
�
q

� ct
2y

b

�
dy

� bct
4
� bcr

2 2F1

�
−q;

1

p
; 1� 1

p
; 1

�
(39)

When used in a constrained optimizer the aspect ratio and
wing area are conserved throughout the process. Additionally, the
following constraints was implemented

cr > 0 and ct > 0 (40)

The MATLAB optimization toolbox was used. The Sequential
Quadratic Programming (SQP) algorithm of fmincon was chosen.
The SQP algorithm is a gradient-based method that adheres to all
constraints throughout the iteration process [13]. Several different
initial starting planformswere attempted to ensure convergence to the
same solution planform. Initial gradients were not user supplied.

Experimental Results

Sectional-Airfoil

The sectional aerodynamic characteristics of the S8036 profile are
examined in Fig. 3. Testing encompassed aRe sweep from 40,000 to
200,000. For graphical clarity, some data sets have been omitted in
the plot. As seen, the impact of Re is primarily associated with Cd.
Increasing Re yields a reduction in boundary layer thickness and a
contraction of the laminar bubble for a given incidence [14], yielding
a reduction in Cd. Drag coefficient attenuation is reflected in
significant improvements in the maximum lift to drag ratio with Re.
The curvature of the drag polar, relating to sectional pressure drag is
observed to be similar for Re ≥ 125; 000. For Re ranging from
125,000 to 200,000 the impact of Re for this airfoil is a Cd min shift
with little change in the Cl dependence. The appearance of Cd min

atCl > 0 (as would be expected for a cambered airfoil) is observed to
be Re dependent (Re � 80; 000 to 175,000), indicating a reduction
in drag due to lift (pressure drag) due to bubble contraction and a
lessening of upper surface trailing-edge separation (as indicated
through Xfoil‡ simulation).
A summary of airfoil characteristics is presented in Fig. 4 ex-

plicitly showing Re dependence. Reynolds number effects manifest
primarily in the drag coefficient. The minimum value of the drag
coefficient is seen to drop rapidly for Re < 150; 000 and then flatten.
As indicated by the Cd min curve fit, the drag rise with Re is slower
than for purely laminar flow (i.e., ∝Re−0.5) and is due to the mixed
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Fig. 8 Comparison of analytic theory and nonlinear numerical lifting line theorywith experiment, totalCD: a)Re � 100;000, and b)Re � 150;000, and
CD − CD min, c) Re � 100;000, and d) Re � 150;000.

‡Data available online at http://web.mit.edu/drela/Public/web/xfoil/
[accessed 1 May 2013].
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(laminar transition-bubble turbulent) nature of the flow. Lift based
characteristics (Cl max and αStall) improve markedly as the Re
increases above 40,000. This is reflective of elimination of large scale
laminar separation through natural transition of the separated shear
layer causing re-attachment and consequently the formation of a
bubble. The dramatic reduction in Cd min causes a systematic im-
provement in l∕d�max with a logarithmic dependency shown.

Finite-Wing

Figure 5 presents the impact of taper ratio on the longitudinal
aerodynamic characteristics of the wing. For either Re, the data does
not reveal an overwhelming impact of taper ratio (Figs. 5a and 5b).
Wing stall characteristics are insensitive to λ in this Re range. The
maximum lift to drag ratio favors λ � 0.2 to 0.4. Figure 5c displays a
summary characterizing pertinent performance parameters as
affected by taper and Re. A reduction in the taper ratio causes a net
increase in the wing’s lift curve slope (measured over the −4 < α <
4 deg interval) forRe � 100; 000 although this trend is inconclusive
forRe � 150; 000. BothCL max and αStall favor a lower λ of 0.4 to 0.6
while λ � 0.2 decreases both of these quantities markedly. The
maximum lift to drag ratio does not show any marked trends, al-
though it may be seen that λ � 0.4 performs best. Theminimum drag
coefficient increases as taper reduces, due to an outboard sectional

drag coefficient penalty. Also included on the plots are predictions
from the extended numerical lifting line theory (“Numerical
Prediction”) and the analytic method [Eq. (9)]. The minimum drag
estimates obtained using Eq. (9) and lifting line theory show close
accord and agreement with experiment. The numerical estimates of
L∕D�max are also in good agreement with experiment.
Skin friction patterns, rendered using TitaniumDioxide suspended

in Kerosene and Linseed oil are presented in Fig. 6. The images
elucidate the impact of taper on the laminar separation bubble
and fluid flow behavior. Results are presented for three λ’s and α’s
at Re � 100; 000 and 150,000. In the attached flow regime
(α � 5 deg) the primary effect ofRe is to shorten the bubble, but not
the initial location of separation, a result consistent with other studies
[14]. For λ � 0.4 and 1,Re does not have a notable impact at α � 10
or 14 deg. For λ � 0.2, the extent of separation at Re � 100; 000 is
greater than at 150,000, in accordance with the data in Fig. 5c where
the difference in CL max for λ � 0.2 is far greater between Re �
100; 000 and 150,000 than for the other taper ratios. At α � 5 and
10 deg, a laminar transitional bubble is present for all geometries
and Re.
In the predominately attached flow regime (α � 5 deg), the

bubble extent appears to scale linearly towards the tip, but not
proportionally to the taper. The bubble reduces in physical extent
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Fig. 9 Effect of viscosity on spanwise lift coefficient distribution estimated using nonlinear numerical lifting line theory.
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(actual length) but occupies a greater portion of the local chord, see
Table 1. As seen, the chordwise extent occupied by the bubble
increases towards the wing tip as λ drops. The bubble terminates
inboard of thewing tip due to the influence of thewing tip vortex. For
both Re, the length of the bubble inboard is relatively invariant at
approximately 20% of the local chord, Table 1. In the tip region, the
location of separation marking the forward extent of the bubble
moves progressively forward as λ reduces. The increase in local Cl
and frontward movement of the suction peak as the wing tip is
approached enhances the adverse pressure gradient promoting
separation.
At α � 10 deg, the bubblemoves closer to the leading edge for all

geometries due to a forward migration and enhancement of the
suction peak. For the taperedwings, turbulent separationmanifests in
the formation of a line of separation near the trailing edge precipitated
by spanwise flow from the wing tip to the root. The magnitude of the
spanwise flow (interpreted as curvature of the skin friction lines)
is enhanced as λ reduces. This implies greater spanwise pressure
gradients in the trailing-edge region. Clearly visible are skin friction
lines originating at the bubble and streaming aft to coalesce into the
aft line of separation implying that the bubble is not continuously
bounded by a closed separation stream surface. These skin friction
lines were observed to originate during periodic “venting” of the
laminar bubble where fluid was ejected aft. At α � 14 deg, all
geometries show large extents of flow separation consistent with stall

(Figs. 5a and 5b). The extents of separation are seen to be moderately
larger at Re � 100; 000 than 150,000 for λ � 0.4 and 1. This is not
the case for λ � 0.2 where massive separation is visible at
Re � 100; 000, while at Re � 150; 000 a region of attached flow is
evident inboard and ahead of the line of separation. For all cases, the
aft spanwise separation line is seen to terminate in a focus of
separation near the trailing edge at the root.Atα � 14 deg, a focus of
separation was visible near the wing tip for λ � 0.2 (with rotation
clearly evident in video recorded during testing). Examination of the
video material also showed that for this geometry, the flow was
unstable at high incidence, with periodic fluidic eruptions and
oscillations in the wing tip focus which coupled with unsteadiness in
the large scale inboard separation.
The effect of finite span on the bubble behavior was examined

through additional sectional testing. The wing (λ � 1) was extended
to the tunnel walls using an extension piece yielding sectional
characteristics. Testswere conducted such that theRematched that of
the λ � 0.2 wing at the midspan (local Re number of 150,000) and
0.9 of the span (localRe of 90,000) at α � 5 deg. The lift coefficient
of the wing and airfoil section were also matched. Results are
summarized in Table 2 with presentation in Fig. 6. The chordwise
extent (length) of the bubble appears little affected by three dimen-
sionality. At themidsemi-span location, the bubble characteristics are
similar to those of the airfoil at the same Re. However finite wing
effects manifest in the tip region, where the bubble is located further
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Fig. 10 Effect of viscosity on spanwise load distribution estimated using nonlinear numerical lifting line theory.
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forward than on the airfoil at the same Re. This follows from the tip
being at a higher loading condition (local Cl) than the airfoil.

Comparison of Theory and Experiment

Figure 7 shows aCL comparison of the nonlinear lifting line theory
with experiment for both Re. The predictions are seen to show good
agreementwith experiment.Nonlinearities in the lift curve associated
with bubble motion and displacement thickness effects [15,16] are
well captured. Predictions cannot be made into the stall region as αZL
tends to negative infinity as the lift curve plateaus.
Figure 8a and 8b present estimates of the drag coefficient predicted

using the nonlinear lifting line code and analytic theory [Eqs. (2) and
(9)]. The analytic approach calculates the sectional pressure drag
estimate based upon the airfoil data collected at the Re of the mean
chord of the tapered wing. The close accord shown in Figs. 8a and 8b
between experiment and both theoretical approaches is encouraging
and supports the simplification in the estimate of the sectional
pressure drag in the analytic approach. The estimate of the minimum
drag coefficient is similar for both theoretical approaches and in
accordwith experiment. The lift dependent drag,which reflects in the
curvature of the polar is well approximated by both methods. The
drag due to lift comprises both sectional pressure drag and inviscid
vortex drag. The premise of estimating the wing’s profile pressure
drag based upon airfoil characteristics at the mean Re for the wing is
seen to improvewith Reynolds number in theRe range explored (the

theoretical predictions in Fig. 8b are indistinguishable). This follows
as an increase in freestream Re yields a smaller variation in the
spanwise drag coefficient as the Cd variation with Reynolds number
lessens as Re increases, see Fig. 4.
Figure 8c and 8d examine the lift dependent drag characteristics

explicitly as affected by Re. Also included is the inviscid result,
which represents full leading-edge suction for the geometry (i.e., not
for elliptic loading). Immediately apparent is the magnitude of the
sectional pressure drag contribution to the total lift dependent drag.
Also observed is a reduction in this drag component as Re is in-
creased from 100,000 to 150,000 interpreted as the difference
between the experimental data and the “Inviscid Solution” line. In-
creasing taper shows a systematic reduction in sectional pressure drag
for both Re (i.e., the gap between the experimental data and the
inviscid solution line reduces). This implies that the benefit of
increased chord and thus inboardRe tends to outweigh the chord and
Re reduction towards the wing tips.
Figures 9–12 show spanwise lift and drag distributions illumi-

nating the effect of viscosity as predicted using the numerical lifting
line formulation. Figure 9 implies that viscous effects have a negli-
gible effect on the spanwise local lift coefficient for taper ratios above
0.6. Below λ � 0.6 viscosity (through alteration of the local lift curve
in terms of slope and extrapolated αZL) alters the spanwise Cl’s with
an apparent dependence on Re. For reference, the spanwise load
distribution (Fig. 10) also includes a curve representing elliptic
spanwise loading. Familiar trends associated with taper are evident,
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Fig. 11 Effect of viscosity on spanwise induced drag distribution estimated using nonlinear numerical lifting line theory.
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where low taper (λ close to 1) increases loading outboard, λ � 0.4
approximates elliptic loading (consequently yielding an ei just below
1 [4]) and high taper (λ close to 0) increases loading inboard and
attenuates it outboard. Viscosity is seen to only have a significant
effect for high taper (λ � 0.2) and Re � 150; 000. For this case
viscosity increases loading inboard and reduces it outboard com-
pared to the inviscid case.
The spanwise variation of the vortex drag is presented in Fig. 11.

The alterations to the spanload distribution changes the trailing
vorticity strength yielding variation in the distribution of the inviscid
drag. Consequently, the vortex drag is increased inboard and reduced
over the midsection of the wing most notably for Re � 150; 000 and
λ � 0.2 and 0.4. Taper is seen to shift the balance of the vortex drag;
low taper (high λ) yieldingmost vortex drag generation near thewing
tipwhile high taper causes significant vortex drag production near the
wing root. Figure 12 shows the spanwise profile drag distribution,
which comprises both the skin friction and sectional pressure drag.
The profile drag is generated primarily in the inboard regions, with
this behavior strengthening as the taper ratio increases (lower λ). This
follows from the greater extent of chord inboard overpowering the
drop in the local sectional drag coefficient. At lowerRe, the nonlinear
increase in the drag coefficient outboard (see Fig. 1) yields a signif-
icant increase in sectional profile drag outboard despite the reduction
in the local chord.
Coupling of the numerical lifting line theory with an optimizer as

described prior allows development of planform shapes that mini-

mize the total drag coefficient. Figure 13 shows planform examples
for two aspect ratio and Re numbers at CL of 0.3. Airfoil charac-
teristics were established using the current experimental data as well
as Xfoil simulation. Optimization tends to drive up thewing tip chord
compared to an elliptic planform so as to minimize the drag penalty
in the tip regions (due to the low Re). Sensitivity to the prediction
of the airfoil characteristics is evident. Xfoil generally under predicts
the drag coefficient compared to experiment [14]. This causes optimi-
zation to lessen the tip chord so as to reduce the inviscid (vortex) drag.
Experimental data, which indicate higher sectional drag coefficients
tends to increase the tip chord such that the increase in vortex drag (as
λ → 1) is outweighed by the profile drag reduction. These results
suggest that at low Re in the AR range of this study the use of an
airfoil section with high profile drag will yield a pseudo-rectangular
planform as optimal.

Conclusions

A low speed experimental investigation is presented quantifying
the effect of taper ratio at low Re. Characterization of the airfoil
behavior was followed by wind-tunnel testing of AR � 5.56 wings
with taper ratios ranging from 0.2 to 1. Test conditions encompassed
Re � 100; 000 and 150,000. The wind-tunnel data did not show any
decisive trends as to an optimal taper ratio to achieve best perfor-
mance. Two theoretical methods, one analytic and the other an
extended nonlinear viscous lifting line theory are presented. Both
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Fig. 12 Effect of viscosity on spanwise profile drag coefficient distribution estimated using nonlinear numerical lifting line theory.
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methods showed good agreement with experiment for estimates
of the total wing drag coefficient, while the numerical lifting line
method also showed good agreement in estimation of the nonlinear
lift curve slope common at lowRe. Coupling of the numericalmethod

with an optimizer suggested a sensitivity to airfoil efficiency in
determination of an optimal planform. Greater airfoil drag risewould
drive the solution to a rectangular planform. Higher airfoil efficiency
would yield planforms of pseudo-straight taper.
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